Главная страница
Бюллетень
Викторина
Глава
Диплом
Доклад

Математика в древней Греции


Скачать 70.29 Kb.
НазваниеМатематика в древней Греции
Дата26.02.2016
Размер70.29 Kb.
ТипДокументы

Сообщение на тему:

Математика в древней Греции.

Подготовила ученица 8 «А»

Класса:

Береза Анастасия
Преподаватель:

Ваймер Светлана

Викторовна.
Математика – одна из древнейших, важнейших и сложнейших компонентов человеческой культуры. История математики тысячами нитей связана с историей других наук. Народная мудрость гласит, что невозможно понять подлинный смысл настоящего и цели будущего, если не знать и не ценить прошлое. Жизнь не стояла на месте. С развитием человечества появляется потребность передавать известия друг другу, писать, считать. Так в далёком прошлом постепенно зарождалась математика. Древние греки были удивительно талантливым народом, у которого есть чему поучиться даже сейчас.

В те времена Греция состояла из многих мелких государств. Каждый раз, когда приходилось решать какой-нибудь важный государственный вопрос, горожане собирались на площади, обсуждали его, спорили, а потом голосовали. Они были хорошими "спорщиками". По преданию, в то время сложилось утверждение: " В споре рождается истина!" Греки отличались трудолюбием и смелостью. Среди них были отличные строители, мореплаватели, купцы и художники. Они внесли большой вклад в развитие культуры и науки, особенно математики.

Истории известно, что ученые-математики древней Греции были крупнейшими математиками в далеком прошлом и задачи, составленные ими интересны и в наши дни. Весьма большая часть нашего современного школьного курса математики, особенно геометрии, была известна древним грекам. Учитель никогда не начнет изложения новой темы, не говоря о новом разделе математики, без вводной исторической части, вызывающей интерес и внимание учеников. Уроки с привлечением исторического материала никого не оставляют равнодушными. Как, знакомя учеников с начальными понятиями геометрии 7 класса, не рассказать о греческой математике? Как изучая тему “Площадь” 8 кл. не объяснить измерение площадей в Древней Греции (решение старинных задач). Именно здесь так устанавливается связь исторических сведений с материалом рассматриваемой темы.

История математики выступает средством активизации познавательной деятельности учащихся. А это является основой учебной деятельности по той причине, что:

– интерес способствует формированию глубоких и прочных знаний;

– развивает и повышает качество мыслительной деятельности, активность в учении, благоприятствует формированию способностей;

– создает более благоприятный эмоциональный фон для протекания всех психических процессов.

Экскурс в историю можно сопровождать картинками, слайдами, презентацией. Математика со времени её зарождения как науки и много раньше была тесно связана не только с цивилизацией, с практикой, но и со всей общечеловеческой культурой – со всем миром. И математические теории, и методы открывались, создавались конкретными личностями, математиками, жизнь и судьба которых, интересная и насыщенная, поучительная и порой трагическая, неотделима от исторической эпохи, в которую они творили.

Ученые Греции



Расскажем о Пифагоре, именем которого названа теорема, которую знают все. В Древней Греции жил ученый Пифагор (родился он около 580 г. до н. э., а умер в 500 г. до н. э.). О жизни этого ученого известно немного, зато с его именем связано ряд легенд. Рассказывают, что он много путешествовал, был в Индии, Египте, Вавилоне, изучал древнюю культуру и достижения науки разных стран. Вернувшись на родину, Пифагор организовал кружок молодежи из представителей аристократии. В кружок принимались с большими церемониями после долгих испытаний. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя.

Так на юге Италии, которая была тогда греческой колонией, возникла так называемая пифагорейская школа. Пифагорейцы занимались математикой, философией, естественными науками. Ими было сделано много важных открытий в арифметике и геометрии. В школе существовал декрет, по которому авторство всех математических работ приписывалось Пифагору. Пифагор был убит в уличной схватке во время народного восстания. После его смерти ученики окружили имя своего учителя множеством легенд, так что установить о Пифагоре правду невозможно. Теорема Пифагора имеет богатую историю. Оказывается, она задолго до Пифагора была известна египтянам, вавилонянам, китайцам и индийцам. Доказательство самого Пифагора до нас не дошло. В настоящее время имеется свыше 100 доказательств. Возможно, что одно из них принадлежит Пифагору и его ученикам.

Архимед – вершина научной мысли древнего мира. Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Герона. Учился Архимед в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали самую большую в мире библиотеку.

Основные работы Архимеда касались различных практических приложений математики, физики, гидростатики и механики. В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" – отношение длины окружности к диаметру – и доказал, что оно одинаково для любого круга.

Архимед, погибший при захвате римлянами его родного города Сиракузы в то время, когда пришел римский солдат. По преданию, Архимед был увлечен решением геометрической задачи, чертеж которой был выполнен на песке. Солдат, убивший Архимеда, или не знал о приказе военачальника сохранить жизнь Архимеду, или не узнал Архимеда. В наше время имя Архимеда связывают главным образом с его замечательными математическими работами, однако в античности он прославился также как изобретатель различного рода механических устройств и инструментов, о чем сообщают авторы, жившие в более позднюю эпоху. Считается, что Архимед был изобретателем архимедова винта, который служил для подъема воды на поля и явился прообразом корабельных и воздушных винтов.

Вызывает сомнение и подлинность истории, что будто бы царь поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. “Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: “Эврика! Эврика!” (греч. “Нашел! Нашел!”)”.

При обороне Сиракуз от осаждавших этот город римских войск Архимед создал подъемные и метательные машины, а “зажигательное зеркало”, с помощью которого он якобы сжег корабли доныне остается загадкой, волнующей умы исследователей.

Сохранившиеся математические сочинения Архимеда можно разделить на три группы. Сочинения первой группы посвящены в основном доказательству теорем о площадях и объемах криволинейных фигур или тел. Сюда относятся трактаты “ О шаре и цилиндре, Об измерении круга, О коноидах и сфероидах, О спиралях и О квадратуре параболы”. Вторую группу составляют работы по геометрическому анализу статических и гидростатических задач: О равновесии плоских фигур, О плавающих телах. К третьей группе можно отнести различные математические работы: О методе механического доказательства теорем, Исчисление песчинок, Задача о быках и сохранившийся лишь в отрывках Стомахион.

Евклид. Древнегреческий ученый Евклиду принадлежат сочинения по механике, оптике, музыке. Известны его заслуги и в астрономии. Евклиду приписываются также несколько теорем и новых доказательств

Из дошедших до нас сочинений Евклида наиболее знамениты “Начала”, состоящие из 15 книг. В 1-й книге формулируются исходные положения геометрии, а также содержатся основополагающие теоремы планиметрии, среди которых теорема о сумме углов треугольника и теорема Пифагора. При построении правильных многоугольников опять звучит это имя Евклида. XIII книга "Начал" посвящена платоновым телам – правильным многогранникам, красотой которых восхищаемся на уроках стереометрии. Рассматривая вопросы дифференциального и интегрального исчислений на уроках анализа, говорим о том, что идеи, положенные в их основу Ньютоном и Лейбницем в XVII в., уходят своими корнями к методу исчерпывания, открытому еще Евклидом и Архимедом.

Фалес из Милета (ок.625 – ок.547 до н.э.) древнегреческий ученый и государственный деятель, первый из семи мудрецов. Во время путешествий он посетил Египет, где и познакомился с астрономией и геометрией. Легенда рассказывает о том, что Фалес привел в изумление египетского царя Амазиса, измерив высоту одной из пирамид по величине отбрасываемой ею тени Задача. Измерить высоту пирамиды по отбрасываемой ею тени. (Размеры даны в локтях; 1 локоть = 7 ладоням = 466 мм.)

Зачинатель и родоначальник греческой философии и науки. Считается, что Фалес первым доказал несколько геометрических теорем, а именно:

  • вертикальные углы равны;

  • треугольники с равной одной стороной и равными углами, прилегающими к ней, равны;

  • углы при основании равнобедренного треугольника равны;

  • диаметр делит круг пополам;

  • угол, вписанный в полуокружность, всегда будет прямым.

Фалес определял высоту предмета по его тени, расстояния до кораблей, используя подобие треугольников. Он сделал ряд открытий в области астрономии, установил время равноденствий и солнцестояний, Определил продолжительность года. Фалес был причислен к группе “семи мудрецов”.

Эратосфен Киренский (ок. 276 – 194 до н.э.) – разносторонний ученый: математик, астроном, географ, историк и филолог. Прославился благодаря изобретению “решета Эратосфена”. В сочинении “ Решето” Эратосфен создал оригинальный метод для “отсеивания” простых чисел. В последовательности натуральных чисел зачеркнем 1. Число 2-простое. Зачеркнём все числа, кратные 2. Число 3– первое из незачеркнутых – простое.  Затем  зачеркнем всякое число, делящееся на 3, и т. д. Так можно получить сколь угодно большой фрагмент последовательности простых чисел. Во времена Эратосфена писали на восковых дощечках. Числа не зачёркивали, а прокалывали. Отсюда и название метода– решето. Сконструировал прибор – мезолябий для механического решения делосской задачи (удвоения куба).